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Topological validation of morphology modeling by extended reverse Monte Carlo analysis
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A combination of reverse Monte Carlo (RMC) and computational homology is examined as a useful ap-
proach in connecting scattering experiments to mathematics for 3D morphology modeling. We develop a
different method of morphology modeling from multiple two-dimensional (2D) scattering patterns of structure
functions by RMC technique using coarse-grained particles. We perform RMC analysis for multiple 2D
scattering patterns of the configuration generated from the surface equation of double gyroid morphology.
Homology analysis enables us to classify complex three-dimensional morphologies by incorporating topologi-
cally invariant quantities, the so-called Betti numbers. It is demonstrated that RMC analysis reconstructs the

DG morphology from multiple 2D scattering patterns.
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I. INTRODUCTION

Characterization and visualization of nanostructured mor-
phology in materials science have recently attracted much
interest. The bulk structure is very important in understand-
ing the origin of the functions of some nanosized materials.
Modeling from real materials has valuable a contribution in
its simulational and numerical studies. A subject matter in
the surfactant and water systems, the kinetic pathway during
the morphological transition via double gyroid (DG) mor-
phology, has recently generated much interest [1]. Three-
dimensional transmission electron microscopy (3D-TEM) is
a powerful tool for direct observation of the nanostructure of
thin samples whose depth is limited to a few ten nanometers
[2]. In order to examine not surface but bulk structures of
soft materials such as polymer composites and colloids, a
method observing large scale structures of the order of a few
ten nanometers to a few um is needed. Small angle x-ray
scattering (SAXS) experiments have been widely used to
study large-scale structures in the bulk of soft materials [3].
One of the advantages of this approach is that recent time-
resolved SAXS experiments can observe fast structural
changes in short intervals (on the order of 100 ms). Two-
dimensional (2D) patterns of structure functions S(g*) are
usually observed by using imaging plates and charge-
coupled device (CCD) detectors. S(g*) indicates the projec-
tions of the structure factors onto the plane ¢'=0 in Ewald
sphere. Here, the g* plane is perpendicular to the axis of the
incident x rays.

There is a demand for a method of modeling large-scale
structures consistent with the 2D structure functions S(g*‘),
without incorporating prepared structures and/or the expert
judgment. One possible candidate is the reverse Monte Carlo
(RMC) analysis method which is used to model the amor-
phous structure of atoms under periodic boundary condition
(PBC) [4-6]. Note that the structural model obtained from
RMC analysis is consistent with a given structure factor. It is
confirmed that it can be applied to large bulk structure mod-
eling [7]. RMC analysis of the structure of colloidal aggre-
gates is also performed by assuming that a particle corre-
sponds to a colloid instead of an atom [8,9]. To treat general
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small angle scattering data, the most useful method was
originally proposed by Svergun concerning the modeling of
isolated macromolecules, such as proteins, in dilute solution.
In this approach, a randomly shaped large particle is repre-
sented by an aggregate of smaller dummy atoms [10]. Re-
cently, one of the authors has developed the extended RMC
method for the 2D patterns, S(g*), of a uniaxial system [11].
This method has been used to estimate from their 2D pat-
terns S(g*) of stretched rubbers the three-dimensional (3D)
morphology of silica nanoparticles with a diameter of about
300 nm [12]. These 2D patterns are observed in time re-
solved 2D-USAXS (ultrasmall angle x-ray scattering) ex-
periments using SPring-8 by Shinohara et al. [3].

The RMC method is also used in modeling a structure
with local disorders in the periodic system. The average
structure consists of many crystalline unit cells and instanta-
neous positions create disorders around this average struc-
ture. The RMC method is more suitable than Rietveld analy-
sis and pattern fitting based on maximum entropy method
[13,14] in estimating the structures of materials not highly
ordered. In order to model weak disorder in atomic crystal-
line systems from powder diffraction data, RMCpow and
RMCprofile are proposed [15,16]. In these methods, the mod-
eled atoms in the PBC box possess both consistent Bragg
peaks and the diffuse scattering intensities associated with
either the long- or short-range order of the structures. For
fitting of multiple unit cells, the weighting factors for Bragg
peaks and the diffuse scattering intensities are important in
order to save computing times.

The purpose of this paper is to demonstrate the extended
RMC analysis for the multiple 2D scattering patterns of com-
plex 3D morphologies. As the first step of RMC modeling,
the computer-generated 2D patterns of the structure factors
of one unit cell of the DG morphology are examined. The
DG morphology plays a key role during the morphological
transition in surfactant and water systems. Recently, Imai et
al. have observed changes of 2D patterns of scattering inten-
sity in the various directions during the morphological tran-
sition via the DG morphology [1]. We have also developed
techniques to apply computational homology for the topo-
logical characterization of the bulk structures consisting of
an aggregate of particles. The identification of the DG mor-
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phology, which belongs to the Ia3d space group, was diffi-
cult in the microphase separation system of diblock copoly-
mers [17-21]. Instead of visual inspection of 3D pictures or
cross-sectional views, the concept of algebraic topology pro-
vides us definitive identification in terms of the homology
groups H(U) (k=0,...,3) to characterize the topological
properties of a 3D structure U [22]. In particular, the kth
Betti number B,(U) is a rank of the kth homology group
H,(U) of a topological space. By(U) represents the number
of connected components; B;(U) and B,(U) are equal to the
numbers of tunnels and voids respectively. B3(U) is zero
except for the case of uniform state. The sequence of B(U)
can be estimated using CHomP (computational homology
project) software from cubical complexes approximating U
[23]. Here, the well-known Euler characteristic y is obtained
as the alternate sum of the sequence of the Betti numbers:
X=Bo—B1+B2— B

In this paper, we confirm that the combination of RMC
modeling method for 2D scattering patterns and the identifi-
cation method based on recent mathematics is appropriate to
study complex 3D morphology and its structural change. In
the next section, RMC analysis for tomographical patterns of
2D structure functions and computation of the Betti number
are briefly described. In Sec. III, we present the results of
RMC analysis for 2D patterns of the structure of particles
forming a DG morphology and evaluate the obtained results
in terms of the Betti numbers. In the last section, discussion
and summary are presented.

II. METHODS

A. Reverse Monte Carlo analysis for two-dimensional
tomographical patterns

Reverse Monte Carlo (RMC) analysis is widely used as a
general method for analyzing diffraction data of disordered
materials [4—6]. The RMC method models a 3D morphology
in real space, that is, atomic configurations, from a measured
structure factor S**P(g). In the RMC procedure, the differ-
ence between observed structure factor and that calculated
from the 3D configuration of virtual atoms in a computer is
minimized within the error limit. The concept of the RMC
method can be easily extended to analyze the multiple 2D
patterns S(g*) of the structure factors. In order to identify the
3D structure of particles, it is considered that a certain spe-
cial set of 2D scattering patterns, tomographically observed
in crystallographic directions, is required.

To perform RMC analysis, we should consider how we
compute 2D scattering pattern of structure factor. Experi-
mentally observed scattering patterns correspond to the 2D
patterns S(ql) when q” is zero or a constant. In a computer,
2D patterns S(g) of structure factors are calculated from the
positions of virtual atoms. In the RMC method, periodic
boundary condition (PBC) are applied. For a certain unit cell,
the structure factor is given by

S(‘I) = SInter(q) : Sunitcell(q) . (1)

Shter(q) is described by delta functions corresponding to
Bragg peaks of this particular unit cell. S,icen(q) is the struc-
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ture factor of virtual atoms in the unit cell. It can be ex-
pressed as

Sme(@) = 2 expliq - Lyj,)expliq - Lij)expliq - Lyj)),
Jndiedi

()

where L, denotes the primitive vector of this unit cell in the
h direction. Each summation for j,, j, and j; is a Dirichlet
kernel. It is rewritten as

sin|( 2N, + 1)g - L,/2
> explig - Lyj,) = lim L@N, + Dg - L,/2)

: . (3
i Ny sin[q - L;/2]

where N, is the number of repeat unit cells in the / direction.
The function Sy,(¢q) is termed as the Laue function. For
N, — o, this function becomes the sum of delta functions.
For large N,, the broadening of peaks is negligible. In gen-
eral RMC methods, including RMCpow and RMCprofile, a
supercell, which consists of many repeated unit cells, is used
as a box of PBC. Structure factors are calculated from pair
distribution functions of atoms in this supercell. In real ex-
periments of soft materials, the reasons for the broadening of
peaks are assumed to be due to the fluctuation of the primi-
tive vectors of the unit cell and width distribution of domain
parts of the DG structure in addition to the finite size effect.
Since the reconstruction of a certain unit structure belongs to

the Ia3d space group, we use only the positions of the Bragg
peaks, such as the delta functions given by the infinite lattice
sum. In this paper, we study an extended RMC method to
reconstruct complex network structures such as the DG mor-
phology of real soft materials. In the same manner as in the
case of the general RMC methods, the structure factor is
calculated from pair distribution functions of large configu-
rations consisting of unit cells repeated many times. The
number N,, of repeats can be determined from the condition
that peak broadening due to finite size effects is smaller than
for that which caused the other effects.

A brief summary of the simulation procedure of RMC for
a series of S[hk,](q[Lhkl]) is as follows: (i) Simulation starts with
the initial configuration of particles in a box under PBC in
the x, y, and z directions. (ii) A particle and a displacement
vector of a trial move are chosen randomly, where the vector
satisfies some physical constrains, such as a volume exclu-
sion of particles. (iii) First, a radial distribution function
g[hk,](r[h,d]) is calculated from the configuration of particles.
Then, the corresponding S[hkl](q[hkl]) are calculated by 2D

Fourier transformation (FT) of g[hkl](r[hkl]). The difference

A(x?) of the goodness-of-fit parameter x> in each move is
calculated, where

X = > > A[S[zhkl](q[ihkl])]/ Uztd’ (4)
kD) g #0

A[S[hkl](q[hkl])] [S[hkl](q[hkl]) sz}ccl](q[Jirkl])]z and ogyq is the
standard deviation. (iv) For A(x?) =0, every trial move is
accepted. Trial moves that worsen the fit [A(x?)>0] are ac-
cepted with a probability P=exp[-A(x?)/2]. (v) Steps ii—iv
are repeated until x> converges. These calculations require
huge computing resources. In order to reduce computing
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times and memory, the programming code is parallelized
with message passing interface (MPI) and is highly opti-
mized for execution on the Earth Simulator, NEC SX-7, SGI
Altix 4700 and Hitachi SR11000 machines.

B. Computation of the Betti numbers of morphology formed
by particles

In order to characterize the morphology of particles,
whose positions are determined by RMC analysis, estimation
of the sequence of the Betti numbers is a useful method.
Connectivity of the DG morphology is identified by the se-
quence of the Betti numbers. The Betti numbers of the cubi-
cal set U under the PBC can be estimated via linear algebra,
where the cubical set U is written using the binary mesh
data. Recent advances in algorithms for rapid computation
make this a feasible mathematical tool of the CHomP soft-
ware [23]. In order to use this mathematical tool, we have to
connect the particle configurations to the cubical set. In this
paper, the cubical set is estimated from the particle configu-
ration as follows. First, the mesh field data of the local num-
ber density u;j is obtained from positions of the center of
mass of the particles, where the notation ijk is the index of a
lattice point in the rectangular grids. Second, the domain part
U* of the morphology formed by particles is obtained by the
conversion to binary values with binary threshold being b.
The resulting image is represented by a cubical set of U:
={ijk€[0:N)*|u;;,=b } consisting of a finite union of cubes.
Here, N> means number of lattice points under the PBC. The
matrix part U~ is also defined by that for u;; <b. Actually,
the values of N and b are determined by the heuristic search.
The value of N should be smaller than L/o, because the
binary mesh data is generated from the positions of the cen-
ter of mass of the particles. Here, L is the dimension of a
simulation box under PBC and o is the diameter of particles.
In order to study the backbone structure of aggregating par-
ticles, it seems to be good that the value of b is equal to the
mean volume fraction or a little larger. Details will be de-
scribed in the next section. The Betti numbers for U* and U~
of one-period DG morphology are given as S (U")
=(2,10,0,0) and B,(U7)=(1,10,1,0), respectively. Hereaf-
ter, we note the Betti number sets of the DG morphology by
B(DG™).

III. RESULTS AND DISCUSSIONS
A. Double gyroid morphology and its scattering patterns

As the first test to evaluate the extended RMC analysis for
tomographical scattering patterns of complex 3D morpholo-
gies, a double gyroid morphology is examined. We studied
four sets of light directions [hkl] for tomographical 2D pat-
terns S[hk,](q[Lhkl]) of structure factors of the DG morphology.
The first set is 4 directions of (111), because scattering pat-
terns in the [111] direction have also been shown frequently
in experimental observations [18,19]. The second set is the
18 directions consisting of 6 directions given by (110) and
12 directions by (311), because scattering patterns in the
[110] and [311] directions have been observed in the experi-
ment by Imai er al. [1]. The third is another 18 directions
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(a)’

FIG. 1. Snapshots of the reference configuration of a DG mor-
phology as viewed from the [111] and [100] axes, respectively. Two
domains form a bicontinuous network that coexists in 3D space.

using (211) instead of (311); scattering patterns in the [211]
direction have been discussed by Vigild er al. [20]. As ex-
plorations for the smaller number case, the case of 3 direc-
tions of (100) is also examined.

In order to calculate S[hkl](Qﬁ,kl]), we create the model of
double gyroid structure consisting of particles. A DG mor-
phology can be closely approximated by the level surface
representation. Thus we can get the double gyroid structure
by randomly placing the particles in this box satisfying the
inequality [24]

3 < 2.75[sin(47mx)sin(27rz)cos(2ry)
+ sin(4my)sin(27x)cos(27z)
+ sin(47z)sin(27ry)cos(27mx) ] — [cos(4mx)cos(4y)

+ cos(4ry)cos(4mz) + cos(4mz)cos(4mx)], (5)

where (x,y,z) are positions normalized to [0, 1) in the box of
the PBC. In practice, we set the unit cell of a DG structure
composed of 8192 particles, whose diameter o is equal to
100 nm, in a simulation box of side length L=4 wm, under
PBC with a volume fraction of 6.7%. Snapshots of the 3D
structures obtained by the above method are shown in Fig. 1.
Here, the presented figures are sections corresponding to the
characteristic directions ([111] and [100]). We can see one
well-known recognizable pattern described as wheel patterns
in the [111] direction [Fig. 1(a)].

Before the calculation of the pair distribution functions
g[hk,](r[ihkl]) and the 2D scattering patterns S[hkl](qﬁ,kl]),
we estimate the number N, of repeats of unit cells. We com-
pared structure factors calculated from pair distribution
functions of large configurations repeated 2, 4, 8, and 16
times. Here, the grid spacing is set to Ar=33.3 nm
to calculate g[hk,](r[ihkl]) and Ag=1.67X10"* nm™'
to transform from g[hkl](r[Lhkl]) to S[hkl](q[Lhk,]). For the
cases of 8 and 16 periods, peak broadening seems to be
similar. In the case of 8 periods, peak broadening by finite
size effects seems to be negligibly small. On the other hand,
broadening due to finite size effects for the cases of 2 and 4
periods is significant. It is considered that peak broadening is
caused by the nonzero width of the domain part of the DG
structure for the case of 8 periods. Thereafter, g[hkl](rﬁhk]])
computed from the large structure with the unit cell of PBC
repeated 8 times, PBC is used to transform to S[hk,](q[ihkl]).
The 2D patterns of structure functions S[hkl](qﬁ,kl]) of the
unit cell of the DG morphology, as viewed from [hkI]
=[110], [111], [211], and [311] axes, are shown in Fig. 2.
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FIG. 2. (Color online) Structure functions S[hk,](q[lhkl]) of the DG
morphology as viewed from the [110], [211], [111], and [311] axes.
The right column shows the corresponding diffraction patterns of
peaks of the first ten allowed reflections expected for single crystals

of the Ia3d phase.

The corresponding diffraction patterns of the peaks of the
first 20 allowed reflections expected for single crystals of the

la3d phase are given in Ref. [20]. The first 10 peaks are also
depicted in Fig. 2.

B. Reverse Monte Carlo analysis

We focus on the issue of how extended RMC analysis for
multiple 2D scattering patterns can reconstruct the complex
3D morphology with topological accuracy. We examine the
one-period structure consisting of 8192 particles due to the
limitation of our computational resources. An initial configu-
ration is given by a configuration obtained from the molecu-
lar dynamics simulation of hard sphere systems. The maxi-
mum length r,,,, of trial moves is set to 100 nm. In the RMC
procedure, standard deviation is set to a constant oy=107%.

The present simulation of the RMC analysis runs up to at
least 300 Monte Carlo steps (MCSs), where one MCS means
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FIG. 3. (Color online) (a) and (b) Structure functions

S[hkz](Qﬁlkl]) of the DG morphology viewed from the [110] and [311]
axes. (c) and (d) The particle configurations obtained by RMC
analysis for tomographical patterns of (110)+(311). Snapshots as
viewed from the [111] and [100] axes are presented.

one trial per segment. The elapsed time for one run is a few
weeks using four nodes (64CPUs) of a Hitachi SR11000 ma-
chine. In this manner, the value of > converges to a suffi-
ciently small value, which is expected to correspond to an
equilibrium state of the system. We recognize that sometimes
it does not converge to the DG morphology at 300 MCSs due
to a given initial configuration or random numbers or both.
As the aim of the present paper is to show possibilities of
RMC reconstruction from multiple 2D scattering patterns
and an application of the topological identification, we used
different sequences of random numbers. When one of the
results of a few trial runs seemed to converge to the DG
morphology upon visual inspection, we examined it thor-
oughly. The obtained 2D scattering patterns seem to be simi-
lar to the reference S[hkl](q[Lhk,]) as shown in Figs. 3(a) and
3(b).

As shown in the corresponding visualization of Figs. 3(c)
and 3(d), it seems that the RMC analysis gives good recon-
structions for the case of (110)+(311) as well as for (111).
The RMC reconstructions fail for the cases of (110)+(211)
and (100) as shown in Fig. 4. In general, it is considered that
the reasons for the failures are unsuitable conditions or in-
sufficient simulation length.

The method of identification of the DG morphology in
this subsection is merely visualization, not morphological
analysis. We cannot be sure whether it is possible to distin-
guish the DG morphology by visual inspection. In the next
subsection, we investigate the sequences of the Betti num-
bers for topological validation of the obtained particle con-
figurations.

C. Topological identification via the Betti numbers

Table I shows the time series of the Betti numbers for the
case of (111). It is topologically confirmed that the DG mor-
phology is obtained as the equilibrium configuration of the
RMC procedure, because the Betti numbers converge to
B(DG™) over about 150 MCSs. The sequences of the Betti
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FIG. 4. (a) and (b) Snapshot of the configuration obtained by
RMC analysis for tomographical patterns of (110)+(211). The fig-
ures as viewed from the [111] and [100] axes are presented. (c) and
(d) Snapshot for (100). The figures as viewed from the [111] and
[100] axes are presented.

numbers are estimated from the mesh field data derived from
the obtained particle configurations, where the length of the
box of the PBC is divided into N=2° mesh cubes. Here, the
mean volume fraction is set to 2= 0.067. However, as shown
in Figs. 3(c) and 3(d), the stochastic procedure of the RMC
analysis causes the creation of uncontrolled transient local
objects such as isolated aggregates. The topological identifi-
cation is sensitive to isolated clusters and vacancies, and
small loops on the roughening interface, i.e., one cube (re-
spectively, one vacancy) adds one to B, (respectively, 5,),
and one loop adds one to ;. As one of the aims of this paper
is to show how the topological invariants of the robust do-
main structure can be determined, the transient objects
should be removed. For a practical use of the topological
identification, verification by some empirical treatments is
meaningful although the validity of these empirical treat-
ments is an open question. In order to avoid the checkered
cube configurations, we employ the Fourier filter that re-
moves the corresponding high wave number disorder com-
ponents. Typical situations obtained for Case 2b (to be de-
scribed in the next subsection) are depicted in Fig. 5. The
binary threshold b is set to higher than the mean number
density u to extract the robust part of the domain structure.

Table II shows the times series of the Betti numbers for
the case of (111), in which we employ the twice binary

TABLE I. Time series of the Betti numbers sequence for the
case of (111) with b=u.

(] (d)

FIG. 5. Typical schematics during the procedure to extract the
robust domain structure from the particle configuration obtained by
RMC analysis for the case of (111) in case 2b. (a) The obtained
particle configuration. (b) Cubical sets converted from the mesh
field data with b=u. (c) The fundamental disordered components
are removed by using the Fourier filter and the Betti number sets are
obtained as B,(U7)=(4,10,0,0) and B,(U;)=(1,10,3,0). We can
guess that there would be a few isolated clusters. Setting b=2iz, the
obtained configuration is recognized as the DG morphology. Actu-
ally, Bo(U7 U Us/ U;)=2 shows that two superfluous isolated rumps
are deleted in (d).

threshold of b=2u. We found that the numbers of MCSs
needed to converge to B,(DG™) is reduced. It means that the
robust part of the domain structure is formed in the early
stages of the RMC procedure.

The time series of the Betti numbers for the case of
(110)+(311) are also shown in Table III, where the conver-
gence numbers are B (U;)=(1,12,0,0)# B(DG*). As
shown in the corresponding visualization of Fig. 6(a), how-
ever, it may be recognized as the DG morphology. We can
guess intuitively that two gyroid network domains would be
connected by a superfluous connection. Hereafter, Uﬁz de-
notes the domain and matrix part of the cubic set obtained
with b=ir and 2u, respectively. Consequently, by doubling
the threshold, we obtained B,(U;)=B(DG*) as shown in
Table IV and Fig. 6(b). The first relative Betti number, i.e.,
rank of the first relative homology groups, is computed as
B(UTU U3/ U3)=3 using CHomP software [23]. It confirms
that three superfluous connections will be deleted, i.e., one of

TABLE II. Time series of the Betti numbers sequence for the
case of (111) with b=2u.

MCSs  By(U))  Bi(U7)  B(UY)  Bo(Uy)  Bi(Uy)  Bo(Uy) MCSs  By(U;)  Bi(U3)  Bao(Uy)  Bo(Uy)  Bi(U)  Ba(U)
30 1 21 0 1 20 0 10 15 0 0 1 3 15
60 1 16 0 1 13 0 20 2 5 0 1 6 2
90 1 14 0 1 12 0 30 1 14 0 1 10 1
120 1 10 0 1 10 1 40 1 10 0 1 10 1
150 2 10 0 1 10 1 50 1 10 0 1 10 1
180 2 10 0 1 10 1 60 2 10 0 1 10 1
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TABLE III. Time series of the Betti numbers sequence for the
case of (110)+(311) with b=u.

PHYSICAL REVIEW E 77, 056704 (2008)

TABLE IV. Time series of the Betti numbers sequence for the
case of (110)+(311) with b=2i.

MCSs  Bo(U))  Bi(UY)  B(UY)  Bo(Uy)  BiUY)  Bo(Uy) MCSs  By(U;) Bi(U3)  Bo(U3)  BoU;) BiU)  Br(Uy)
50 1 20 0 1 19 0 50 1 11 0 1 11 0
100 1 19 0 1 16 0 100 1 11 0 1 11 0
150 1 14 0 1 13 0 150 1 10 0 1 10 2
200 1 12 0 1 12 0 200 2 10 0 1 10 1
250 1 12 0 1 12 0 250 2 10 0 1 10 1
300 1 12 0 1 12 0 300 2 10 0 1 10 1

them connects two network gyroid domains into one and the
other two connections cause two loop defects. The relative
homology H,(AU B/B) is equal to the regular homology of
the quotient space AUB/B, i.e., the topology of AUB
modulo B. The mathematical tools which we use here are by
no means novel. A more complete treatment can be found in
Ref. [22]. In our case, B{(AUB/B)=1 (respectively,
Bo(AUB/B)=1) provides us with the information about a
superfluous connection (respectively, an isolated cluster).
We also examine how the RMC reconstructions go wrong
for the cases of (110)+¢211) and (100). The associated time
series of the Betti number sequences are presented in Tables
V and VI. The time change behavior for the case of (110)
+(211) differs from that for (100). The Betti numbers
quickly converge into stationary values shown in Table VI
along with the convergence of x?, while the Betti numbers in
Table V seem to be in a halfway state through the DG mor-
phology. It is considered that the behavior of the Betti num-
bers shown in Table VI would indicate that three 2D scatter-
ing patterns are not sufficient as conditions for RMC
reconstructions. On the other hand, we suspect that the rea-
son for the unsuccessful reconstruction in the case of (110)
+(211) is insufficient Monte Carlo steps. Thus the scattering
patterns of the [211] direction are not suitable for quantita-
tive determination of the structure from experimental data.
Comparing the 2D scattering patterns shown in Fig. 2, the
intensities of the highest peaks in the [211] direction are
weaker than those in [110], [111], and [311], because peaks
corresponding to {211} are not observed in the [211] direc-
tion. Here, the amplitude of peaks corresponding to {211} is
about ten times stronger than that to {220}. It is obvious that,
in order to perform topological identification for known

(a)

FIG. 6. Typical schematics of the extraction of the robust part of
the domain structure for the case of (110)+(311). (a) Cubical sets
converted from the mesh field data with b=u. To eliminate the thin
connection marked with the arrow, the binary threshold is set to be
twice as high as in (b).

structures, 2D scattering patterns in crystallographic direc-
tions should be examined in experiments. On the other hand,
in order to study unknown structures, e.g., kinetic pathways
during the morphological transition, we should deduce
proper robust domain structures from low intensity 2D scat-
tering patterns in arbitrary directions. In the next subsection,
we will try to improve the RMC fitting process to reconstruct
the DG morphology from 2D scattering patterns including
with relatively low intensity patterns in the (211) directions.

D. Empirical improvements for fast fitting

In the rest of the paper, in order to realize the reconstruc-
tion from weak intensity 2D patterns in the direction (110)
+(211), improvements of the fitting process are studied. The
control of maximum length r,, of trial moves, size o, of
excluded volume constraints, and / or value oy of standard
deviations are important to do this. In this subsection, we
examine the effect by the controlling r,,, and o, as a pre-
liminary study. According to the conventional treatments of
RMC analysis, it is expected that the small r,,,, value would
reduce the transient local objects generation. The control of
044 1S not considered because the scattering data used are
calculated from the computer-generated configuration and
the oy value in real experiments should be determined from
experimental conditions. As the first example, we examine
three cases with a controlled r,,,, for o.,=100 nm as fol-
lows:

Case Ila. 800 nm up to 50 MCSs, 400 nm up to 100
MCSs, 200 nm up to 150 MCSs, and 100 nm over 150
MCSs.

Case 1b. 400 nm up to 50 MCSs, 200 nm up to 100
MCSs, and 100 nm over 100 MCSs.

TABLE V. Time series of the Betti numbers sequence for the
case of (110)+(211).

MCSs  By(Uy)  Bi(U3)  Bo(Us)  BoUy)  Bi(Uy)  Ba(Us)
50 5 5 0 1 3 8
100 3 10 0 1 5 5
150 3 6 0 1 8 4
200 2 2 0 1 3 4
250 1 4 0 1 4 3
300 1 3 0 1 7 3
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TABLE VI. Time series of the Betti numbers sequence for the
case of (100).
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TABLE VIII. Numbers of MCSs needed to converge to the DG
morphology when o, is set to 50 nm. The symbol “—” indicates
the case where the configuration does not converge to S(DG™)

MCSs (U3 Bi(US)  Ba(U3) BoU3) Bi(U3) Bu(U;)  within 300 MCSs.
50 13 0 0 1 3 20 Maximum (111) (110) (110)
100 17 0 0 1 3 21 move 311 Q211
150 17 0 0 1 3 22
200 17 0 0 1 3 2 Case 2a 50 nm 100 MCSs 30 MCSs —
250 17 0 0 1 3 20 Case 2b 200 nm 70 MCSs 30 MCSs 50 MCSs
300 17 0 0 1 3 2 Case 2c 400 nm 30 MCSs 20 MCSs 30 MCSs

Case Ic. 200 nm up to 50 MCSs and 100 nm over 50
MCSs.

In order to examine the robust part of the domain struc-
ture, we set the binary threshold to »=2u. Numbers of MCSs
to converge to the DG morphology are shown in Table VII.
For the cases of (111) and (110)+(311), the MCS number
has a tendency to be smaller than that for constant r,,
=100 nm. Although we recognize the dispersion of the val-
ues of MCSs which converge to the reference morphology,
we note that large values of r,,,, seem to be meaningful. In
order to confirm this claim, we should examine many cases
with different o, and directions, although it is difficult to
compute them at the present time due to a huge requirement
of computational resources.

In order to consider effects arising from the size of the
excluded volume constraints, we also examine the following
three cases controlling r,,,, for o.,=50 nm as follows:

Case 2a. the maximum length r,, is fixed to 50 nm.

Case 2b. 200 nm up to 50 MCSs, 100 nm up to 100
MCSs, and 50 nm over 100 MCSs.

Case 2c. 400 nm up to 50 MCSs, 200 nm up to 100
MCSs, 100 nm up to 150 MCSs, and 50 nm over 150 MCSs.

Numbers of MCSs needed to converge into the DG mor-
phology are shown in Table VIII. For the case of (110)
+(211), the RMC reconstruction goes well except for ry,,
=50 nm. It is remarkable that RMC analysis for the case of
(110)+(211) is successful even though the intensity of the
2D patterns for (211) is considerably weaker than that for
(311). We can conclude that decreasing the size of o, seems
to be effective when used with large r,,,,. We expect that this
scheme is powerful analyzing real experimental data, espe-
cially the kinetic pathway during the morphological transi-
tion via the DG morphology [1,20], because our results in-

TABLE VII. Numbers of Monte Carlo steps (MCSs) needed to
converge to the DG morphology when o, is set to 100 nm. The
symbol “—” indicates the cases where the Betti numbers of all
configurations of a few trials with different sequences of random
numbers do not converge to B(DG™) until 300 MCSs.

Maximum (111) (110) (110)

move (311) (211)
Case la 800 nm 20 MCSs 50 MCSs —
Case 1b 400 nm 40 MCSs 40 MCSs —
Case lc 200 nm 180 MCSs 20 MCSs —

dicate the possibility of 2D tomographical pattern RMC
analysis for lights in the arbitrary directions.

IV. SUMMARY

In this paper, we present the validity of a different mod-
eling method by 2D pattern reverse Monte Carlo analysis for
tomographically  observed  two-dimensional  patterns
S[,lk,](qﬁk,]). It is confirmed that 2D pattern RMC analysis
can reconstruct a DG morphology from S[hk,](q[#lkl]) for ap-
propriate multiple directions. From our numerical experi-
ments, we can conclude the following. When only 2D scat-
tering patterns consist mainly of strong peaks associated with
{211} are used as the reference scattering patterns RMC re-
constructions go well. When weak 2D scattering patterns
such as those in the directions of (211) are included in the set
of the reference scattering patterns, long RMC steps are re-
quired to converge to the reference structure. Control of
maximum length r,, of trial moves and size o, of the ex-
cluded volume interaction is effective for fast RMC recon-
structions. In order to evaluate the topological feature of the
robust parts of the domain structure, empirical treatments
such as adjusting binary threshold and applying Fourier filter
are useful. Computational homology also provides us with
definitive identification of topological classification among
the complex morphologies obtained from experimental ob-
servation and numerical simulations. In future studies, we
should examine the essential factors involved in RMC recon-
struction conditions and the validity of the empirical treat-
ments with which to generate cubical sets before computing
the Betti numbers by using mathematical techniques.

In the preliminary study for the double diamond (DD)

morphology, which belongs to the Pn3m space group, we
succeed in the RMC reconstruction with 2D scattering pat-
terns for the six directions of (110). Here, the Betti numbers
of one-period DD morphology are given as B(U")
=(2,18,0,0) and B,(U")=(1,18,1,0). With the 2D pattern
RMC method and computational homology, it is now pos-
sible to reconstruct complicated 3D morphology from scat-
tering patterns and to quantitatively measure the connectivity
of complex network domains. These results suggest that the
combination of RMC and CHomP will provide a new and
useful approach for connecting scattering experiments to the-
oretical 3D morphology images.
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